Skip to Content
Report an accessibility problem
Engineering  |  Research Services

An Arizona State University research team will seek to significantly increase yields of algal biomass feedstock to ramp up production of biofuels as part of a multi-university project supported by a recently awarded $2 million grant from the Bioenergy Technologies Office in the U.S. Department of Energy.

Peter Lammers

Peter Lammers

Peter Lammers, a research professor with Arizona Center for Algal Technology and Innovation, leads the team that will share funding from the grant with collaborators at New Mexico State University, Colorado State University and the National Renewable Energy Laboratory. AzCATI, which serves the algae industry and research community alike as a national testbed for research and commercialization of algae-based products ranging from biofuels to pharmaceuticals, is embedded within the Fulton Schools of Engineering.

Researchers will evaluate mixotrophic metabolism in algae that consume both carbon dioxide and waste sugars derived from plant cellulose. They’ll use a heat-tolerant algae strain isolated from Yellowstone National Park that is perfectly adapted to growth in closed bioreactors that reduce evaporative water loss — which is critical for deployment of the technology in the arid southwestern United States.

Researchers see potential for multiplying algal production rates by five times over current rates. That achievement would significantly reduce the cost of enclosed algal cultivation systems and boost production particularly in in the southwestern United States.

Rosa Krajmalnik-Brown

Rosa Krajmalnik-Brown

Rosa Krajmalnik-Brown, an associate professor of civil and environmental engineering in the Fulton Schools, will utilize her expertise and the facilities at ASU’s Swette Center for Environmental Biotechnology to identify all microbes that are able to grow in the production system and describe the full suite of metabolic reactions occurring in the mixotrophic, waste-to-energy process.

Algal feedstock production platforms specifically designed for scale-up on land with limited water resources remain a big gap in the Bioenergy Technologies Office algae research and development portfolio

Read the full story